
  1

Yocto for PELUX
2018-03-29



  2

The Yocto Project

● “The Yocto Project is an open source collaboration 
project that helps developers create custom Linux-
based systems for embedded products, regardless 
of the hardware architecture.”

● https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.htm
l
  

https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html


  3

How does it work?

● Separates hardware configuration from software 
configuration

● A layered approach
● Highly customizable



  4

TL;DR building PELUX

● We build images (core-image-pelux-minimal)
● Images pull in software defined by recipes
● Recipes reside in layers
● Some layers are maintained by us, most are not



  5

General flow



  6

PELUX build directory structure

● yocto_pelux
– Sources

● meta-openembedded
● meta-pelux

– conf
– layers
– meta-rpi-extras
– recipes-core

● meta-raspberrypi
– build

● conf
– local.conf
– bblayers.conf

● tmp
● downloads

Output directory

Build configuration



  7

Source material, explained

Highest prio

Lowest prio



  8

LAYERS



  9

Distributions

● High-level configuration for a build
● Sets a distro name and various other settings.
● Sets DISTRO_FEATURES variable

– We’ll get back to why this is important



  10

Recipes

inherit qmake5

# Disable parallel make until .pro files properly set dependencies
PARALLEL_MAKE = "-j1"

OE_QMAKE_PATH_HEADERS = "${OE_QMAKE_PATH_QT_HEADERS}"
DEPENDS += "qtbase qtdeclarative"

SRC_URI = "git://github.com/Pelagicore/qmldevinfo;branch=master;protocol=https"
SRCREV = "50a305aa42a8e542cac66b843fdbfaff08d58bf0"

LICENSE = "MPL-2.0"
LIC_FILES_CHKSUM = "file://LICENSE.txt;md5=9741c346eef56131163e13b9db1241b3"

PV = "1.0+git${SRCREV}"
PR = "r1"

S = "${WORKDIR}/git/"
B = "${WORKDIR}/build/"

FILES_${PN} += "/usr/lib/qt5/qml/com/pelagicore/qmldevinfo/*"
FILES_${PN}-dbg += "/usr/lib/qt5/qml/com/pelagicore/qmldevinfo/.debug"

PACKAGES = "${PN}-dbg ${PN}"

file:///LICENSE.txt%3Bmd5=9741c346eef56131163e13b9db1241b3


  11

PACKAGECONFIG

SUMMARY = "Canonical libwebsockets.org websocket library"
HOMEPAGE = "https://libwebsockets.org/"

inherit cmake pkgconfig

PACKAGECONFIG ?= "libuv client server http2 ssl"
PACKAGECONFIG[client] = "-DLWS_WITHOUT_CLIENT=OFF,-DLWS_WITHOUT_CLIENT=ON,"
PACKAGECONFIG[http2] = "-DLWS_WITH_HTTP2=ON,-DLWS_WITH_HTTP2=OFF,"
PACKAGECONFIG[ipv6] = "-DLWS_IPV6=ON,-DLWS_IPV6=OFF,"
PACKAGECONFIG[libev] = "-DLWS_WITH_LIBEV=ON,-DLWS_WITH_LIBEV=OFF,libev"
PACKAGECONFIG[libuv] = "-DLWS_WITH_LIBUV=ON,-DLWS_WITH_LIBUV=OFF,libuv"
PACKAGECONFIG[server] = "-DLWS_WITHOUT_SERVER=OFF,-DLWS_WITHOUT_SERVER=ON,"
PACKAGECONFIG[ssl] = "-DLWS_WITH_SSL=ON,-DLWS_WITH_SSL=OFF,openssl"
PACKAGECONFIG[testapps] = "-DLWS_WITHOUT_TESTAPPS=OFF,-DLWS_WITHOUT_TESTAPPS=ON,"

PACKAGES =+ "${PN}-testapps"

FILES_${PN}-dev += "${libdir}/cmake"
FILES_${PN}-testapps += "${datadir}/libwebsockets-test-server/*"

https://libwebsockets.org/


  12

Checking DISTRO_FEATURES

PACKAGECONFIG_GL ?= "$
{@bb.utils.contains('DISTRO_FEATURES', 'opengl', 'gl', '', 
d)}"

● If DISTRO_FEATURES contains “opengl”, then add “gl” to 
PACKAGECONFIG_GL, otherwise add an empty string

● This is a super common pattern
● Note the inline python code!
● One can set REQUIRED_DISTRO_FEATURES for mandatory ones



  13

bbappend

● Append to existing recipes!
meta-pelux/recipes-graphics/pango/pango_%.bbappend

# GObject introspection for pango needs to run some commands on the
# native architecture, and uses qemu for this. For aarch64, these 
# commands cause qemu to crash, so we disable introspection.
EXTRA_OECONF_aarch64 += "--disable-introspection"

● Appends are applied according to layer priority



  14

Where does the build happen?

● build/tmp/work/<arch>/<recipe>/<version>/
– temp/

● log.do_configure, log.do_compile etc
● run.do_configure, run.do_compile etc

– git/
● If the source is in a git repo

– build/
● This is where stuff is compiled



  15

Where is the built software?

● Usually, it is in:
– tmp/deploy/rpm/<arch>/<recipe>.rpm

● Or you can find it in the build directory
– tmp/work/<arch>/<recipe>/<version>/deploy-rpms/<arch>/

● Check what goes in what package (recipes create 
multiple packages)

– tmp/work/<arch>/<recipe>/<version>/packages-split/



  16

User configuration



  17

Local configuration (local.conf)

CONF_VERSION = "1"
DL_DIR = "${TOPDIR}/downloads"

MACHINE = “intel-corei7-64”
SDKMACHINE = "x86_64"
DISTRO = "pelux"

# Target Static IP address, Override this to configure a static
# ip address for development purposes such as poky ssh and ping test.
STATIC_IP_ADDRESS = ""

BB_NUMBER_THREADS ?= "${@oe.utils.cpu_count()}"
PARALLEL_MAKE ?= "-j ${@oe.utils.cpu_count()}"

PACKAGE_CLASSES ?= "package_rpm"

BB_DANGLINGAPPENDS_WARNONLY = "1"

mailto:$%7B@oe.utils.cpu_count
mailto:$%7B@oe.utils.cpu_count


  18

Layer configuration (bblayers.conf)

BBFILES  ?= ""
BBLAYERS ?= "                                         \

${BSPDIR}/sources/poky/meta                         \
${BSPDIR}/sources/poky/meta-poky                    \
${BSPDIR}/sources/poky/meta-yocto-bsp               \
${BSPDIR}/sources/meta-openembedded/meta-oe         \
${BSPDIR}/sources/meta-openembedded/meta-networking \
${BSPDIR}/sources/meta-openembedded/meta-python     \
${BSPDIR}/sources/meta-openembedded/meta-multimedia \
${BSPDIR}/sources/meta-swupdate                     \
${BSPDIR}/sources/meta-ivi/meta-ivi                 \
${BSPDIR}/sources/meta-ivi/meta-ivi-bsp             \
${BSPDIR}/sources/meta-pelux                        \
${BSPDIR}/sources/meta-virtualization               \
${BSPDIR}/sources/meta-bistro                       \
${BSPDIR}/sources/meta-template                     \

"



  19

Where should I put my configuration?

● If you want to change a recipe, put the it in the recipe file 
(.bb) or in an append file (.bbappend).

● If it is a global option
– distro.conf (if you are in charge of the distro)
– local.conf (if you are not in charge of the distro)
– image recipe / append



  20

What happens when I build?

● Parse all your recipes and configurations
● Apply all bbappends
● Build dependency graph
● Build software in order of dependencies

– Cross-toolchain first
– Kernel etc next
– Any other software
– Image generation



  21

Standard build steps

● Fetch
● Unpack
● Patch
● Configure

● Compile
● Install
● Package
● QA

Detailed description, please read:
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#bitbake-dev-environment

https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#bitbake-dev-environment


  22

The manifest

● Pelux uses the “repo” tool from the Android project to track 
revisions of all layers

$ repo init -u <url> -b <branch> -m <manifest>
$ repo sync

● Practices:
– Always follow a specifc commit, not a branch
– Sync up on the same yocto release (rocko, pyro etc)
– Use release branches in the manifest repo as well



  23

Manifest example

http://github.com/Pelagicore/pelux-manifests/ 

<?xml version="1.0" encoding="UTF-8"?>
<manifest>
  <remote fetch="git://github.com/" name="github"/>
  
  <project name="GENIVI/meta-ivi"
           path="sources/meta-ivi"
           remote="github"
           revision="5243d83ac2ef13d117065edae8e4f484e7e4f373"
           upstream="master"/>
  
  <project name="Pelagicore/meta-bistro"
           path="sources/meta-bistro"
           remote="github"
           revision="b84bd307bb93bcb10f19de04a2b04d26cdce2ea7"
           upstream="master"/>
</manifest>

http://github.com/Pelagicore/pelux-manifests/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

